
NASA-CR-X9|2X3

/iv - _ i- c,__.
t

Research Institute for Advanced Computer Science

NASA Ames Research?/_er

Implementation Details of the

Coupled QMR Algorithm

Roland W. Freund and Noel M. Nachtigal

100

10 -2

104

104

104

10 -le

10 -a

10 -14

10 -lli

10 "il

_o: ;o ' , ,o _o ' ;o ' ,0 20 30 60 80 90 100

RIACS Technical Report 92.19

October 1992

(NASA-CR-191213) IMPLEMENTATION N93-12801

DETAILS OF THE COUPLED QMR

ALGORITHM (Resparch Inst. for

Advanced Computer Science} 18 p Unclas

G3161 0128422

I

Implementation Details of the

Coupled QMR Algorithm

Roland W. Freund and Noel M. Nachtigal

The Research Institute for Advanced Computer Science is operated by

Universities Space Research Association (USRA),

The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative

Agreement NCC 2-387 between NASA and USRA.

Implementation details of the coupled

QMR algorithm

Roland W. Freund and No 'l M. Nachtigal

Abstract. The original quasi-minimal residual method (QMR) relies on the three-

term look-ahead Lanczos process to generate basis vectors for the underlying Krylov

subspaces. However, empirical observations indicate that, in finite precision arithmetic,
three-term vector recurrences are less robust than mathematically equivalent coupled two-

term recurrences. Therefore, we recently proposed a new implementation of the QMR

method based on a coupled two-term look-ahead Lanczos procedure. In this paper, we

describe implementation details of this coupled QMR algorithm, and we present results

of numerical experiments.

J

J

1 Introduction

Recently, we proposed a new Krylov subspace iteration, the quasi-minimal residual

algorithm (QMR) [5], for solving general nonsingular non-Hermitian systems of

linear equations

Az = b. (1.1)

The QMR method has two main ingredients: the look-ahead Lanczos process, and

a quasi-minimal residual condition. The took-ahead Lanczos algorithm is used to

generate---with low work and storage requirements--basis vectors for the under-

lying Krylov subspaces. Furthermore, look-ahead techniques are used to avoid
possible breakdowns in the classical Lanezos algorithm [7], except for so-called
incurable breakdowns. Once the Lanczos basis is constructed, the quasi-minimal

residual property is used to select the QMR iterates from the Krylov subspaces. As

was shown in [5], the QMR iterates are always well defined, and the quasi-minimal
residual condition leads to a smooth and nearly monotone convergence behavior.

In addition, thanks to the quasi-minimal residual property, it is possible to prove

convergence results for the QMR algorithm. The result is a method with several
desirable numerical and theoretical properties.

In the original QMR algorithm, the look-ahead Lanczos method used gener-

ates the basis vectors for the Krylov subspaees by means of three-term recurrences.

It has been observed that, in finite precision arithmetic, vector iterations based
on three-term recursions are usually less robust than mathematically equivalent

2 R.W. Freund and N.M. Nachtigal

coupled two-term vector recurrences. Therefore, in [6], we proposed a new im-

plementation of the QMR algorithm, based on a coupled two-term recurrence
formulation of the Lanczos algorithm. Together with the derivation, we discussed

in [6] the properties of the new implementation, and presented numerical results

showing that the new method is more robust than the original QMR algorithm.

In this paper, we discuss in more detail the implementation of the new algorithm;

in particular, we focus on the implementation of the coupled two-term version of
the look-ahead Lanczos algorithm. We also give several new numerical examples.

The outline of the paper is as follows. In Section 2, we recall the three-term

look-ahead Lanczos process that was proposed in [3]. Then, in Section 3, we review

the coupled two-term look-ahead Lanczos algorithm that was proposed in [6], and

in Section 4 we give implementation details of the new algorithm. In Section 5, we

briefly recall how the QMR approach can be combined with the coupled Lanczos

algorithm to obtain a new implementation of the QMR method, and in Section 6,

we report results of numerical experiments with this new QMR algorithm. Finally,
in Section 7, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or

complex entries. As usual, M T = [rnkj] denotes the transpose of the matrix

M = [mjk] • We use amin(M) for the smallest singular value of M, while the

vector norm Ilx[I := _ is always the Euclidean norm. We denote by

gn(c , B) := span{c, Sc,..., Bn-le)

the nth Krylov subspace of C N generated by c E C N and the N × N matrix B.

FinMly, it is always assumed that A is an N × N matrix, singular or nonsingular.

2 The three-term look-ahead Lanczos algorithm

The Lanczos process is a method that builds basis vectors for two Krylov sub-

spaces, with low work and storage requirements. Given two starting vectors, v 1

and w I E C N, the algorithm computes two sequences of vectors, {vj}7= 1 and
n ''-7{wj}j=l, such that, for n = 1, 2,

span{vl, v2, ..., v,} = K,,(v 1, A),
(2.1)

span{w1, w2,... , w,} = gn(wl,AT).

In addition, the two sets of vectors are required to obey a biorthogonMity relation.

IdeMly, one would like to impose the condition

wnTvj=wTv n=O for all j<n. (2.2)

This is done in the Lanczos process, as proposed by Lanczos in [7]. However, it

turns out that it is not always possible or numerically stable to construct vec-

tors satisfying (2.2), as exact breakdowns (wTv,, = 0) or near-breakdowns (wTv,,

is small in some sense) may arise. This poses a problem, since the construction

Implementation of the coupled QMR algorithm 3

of the pair Vn+ 1 and wn+ 1 obeying (2.2) involves division by wTvn. As a rem-

edy, one relaxes the biorthogonality condition, requiring instead that, in case of

a breakdown, the relations (2.2) hold only for some range of j up to, but not

equal to, n. This leads to so-called look-ahead Lanczos algorithms, which skip

over the exact and near-breakdowns. The original QMR algorithm is based on a
look-ahead Lanczos method proposed by Freund, Gutknecht, and Nachtigal [3],

which we briefly review next.

Like the classical algorithm, the look-ahead Lanczos algorithm [3] generates

vectors {vj}_'=l and {wj}_= 1 with (2.1). In addition, they satisfy the biorthogo-
nality relation

W_. V. = D., (2.3)

where D. is a block diagonal matrix whose structure is discussed below, and

v.:=[v, ... v.] and W.:=[wl --. w.].

This means that some of the vectors {vj}_= 1 and {wj}_'=l do in fact satisfy the
full biorthogonality (2.2). These vectors are called regular, and they form a sub-

sequence {v.j}j=al and {w.j}j=l,a where

l=:n x<n 2<.-.<n l_<n<n;+ 1, l:=l(n). (2.4)

All vectors that are not regular are called inner. The regular vectors are used

to partition {vj}_= 1 and {wj}_=l into blocks. By convention, one defines blocks

V (j), of size N x hi, containing the regular vector vni and all inner vectors--if

any--between vn_ and vnj+l:

V (j)=[v., v,,,+a --"].

A look-ahead step is then defined in terms of building such a block. Hence the

integer i in (2.4) is just the number of look-ahead steps taken during the first n

steps of the Lanczos algorithm. Moreover, hj is called the length of the jth look-

ahead step. The structure of the sequence {wj}_'=l parallels that of the sequence

{vl}']= 1, so that V,, and W,, can be written as

Vn=[V (1) V (2) "'" V(;)] and IV,=[W (1) W (2) ... W (r)],

and D,_ in (2.3) is given by

Dn = diag(D (1), D(2),..., D(1)), D (j) := (W(J))Tv(J).

The choice of whether to build a regular or an inner vector is determined at each

step, based on the particular look-ahead strategy used. It should also be pointed

out that, even though the look-ahead Lanczos algorithm can handle most break-

downs, there remains a class of breakdowns, the so-called incurable breakdowns,

which cannot be cured by look-ahead techniques. However, incurable breakdowns

occur only in very particular circumstances, and they do not pose a problem in

practice. Finally, since the scaling of the Lanczos vectors is not determined by

(2.1) and (2.3), the look-ahead algorithm sea!as t he vectors to hav e unit length:

IIv,II= IIw,II= 1, n = x,2,.... (2.5)

4 R.W. Freund and N.M. Nachtiga]

The main point of the look-ahead Lanczos process is that vectors satisfy-

ing (2.1) and (2.3) can be constructed by means of short block three-term re-
currences. These recurrences can be written compactly as

AV,, = Vn+lHn, (2.6)

ATw, -1 (2.7)= Wn+IFn+IHnFn,

where H,, is an (n + 1) x n block tridiagonal matrix,

1, if j=l, (2.8)F, := diag(71,72,...,7,), where 7j := 7j-lPj/_j, if j > 1,

is a diagonal scaling matrix with positive diagonal entries, and pj and _i are scale

factors used to ensure that vj and wj, respectively, obey the scaling (2.5). Since the

recurrences used to build vn+ 1 and w,_+1 are short, the look-ahead algorithm has
low work and storage requirements, making it an attractive method for building

bases for Krylov subspaces. However, it has been observed that, in finite preci-

sion arithmetic, three-term vector recurrences are less robust than mathematically

equivalent coupled two-term recurrences. This was our motivation in proposing

in [6] a different implementation of the look-ahead Lanczos algorithm, based on

coupled two-term recurrences. Next, we review this algorithm.

3 The coupled two-term

look-ahead Lanczos process

The coupled two-term Lanczos process is an alternate way of generating the Lanc-

zos basis vectors.* The algorithm generates, in addition to the Lanczos vectors

{vj}_= 1 and {wj}_= 1, a second set of basis vectors, {Pj}'_=I and {qj}_=l, such

that, for n = 1,2,...,

span{p1, P2,..., Pn) = g,(vl, A),

span{ql, q2,--', q-} = K,(wl, AT) •

For simplicity, we will sometimes refer to the Lanczos vectors {v_ }_'_l and {wj }_=1

as the V-W sequence, and to the auxiliary vectors {pj }_=1 and (qj;r]= 1 as the P-Q

sequence. The four sets of basis vectors are generated using coupled two-term
recurrences of the form:

Here,

y. =P.V.,

w. = Q.r lu.r.,

AP n = V,+ILn,

ATQn -1= W.+lr.+xL.r.,

P,,:=[Pl P2 "'" P-] ad Qn:=[ql q2 "'" q,],

*The discussion that follows will not cover all the details and will not justify all the statements

made. For full details, we refer the reader to [6].

Implementation of the coupled QMR algorithm 5

while Un is an upper triangular matrix and L n is an upper Hessenberg matrix,

given by

Un := 1 ". and L n :=

• " " " _/n 1,rl

• .- 0 1

lll I12 ... lln

P2 122

0 P3

: ".. ".. In n

0 • • • 0 Pn+l

and F n is the diagonal matrix defined in (2.8). As was shown in [6], the matrices

L n and Un define a factorization of the block tridiagonal Hessenberg matrix H n

generated by the three-term look-ahead Lanczos algorithm,

H n =LnU n. (3.1)

In addition, it is possible to reduce L, and U n to block bidiagonal matrices, by

constructing the basis vectors p,, and qn so as to be block A-biorthogonM. Here,

similar to the V-W sequence, the vectors Pn and qn are also constructed using
look-ahead techniques. For example, we again have blocks P(J),

p(D = [P,n, Pro,+, "'"],

where Prnj is called regular, the other vectors in the block are called inner, and

the indices mj satisfy

l=:m 1 <rn 2 <.-.<mk <n<mk+l, k:=k(n).

The regular vectors P'i satisfy the A-biorthogonality condition

qTAp,n _ = 0 for all i < mj, (3.2)

while the inner vectors satisfy only a relaxed version of this condition. Once again,

the structure of Q. parallels that of P,,, and the A-biorthogonality of the two sets
of basis vectors can be written as:

QTnAP . = E,_ = diag(E (1), E(2),..., E(k)), E (j) := (Q(J))TAp(J). (3.3)

Before we consider the implementation details, let us briefly discuss an outline

of the Mgorithm. At each iteration, the process consists of the following four basic

steps.

Algorithm 3.1. (Overview of the coupled algorithm with look-ahead)

1) Decide whether to construct Pn and qn as regular or inner vectors•

2) Compute Pn and qn as either regular or inner vedors.

3) Decide whether to construct v,_+l and w,+ 1 as regular or inner vectors.

4) Compute vn+ 1 and wn+ 1 as either regular or inner vectors.

6 R.W. Freund and N.M. Nachtigal

Steps 1) and 3) are the basis of the look-ahead strategy, and they each consist

of three checks. Recall from (2.6) and (2.7) that the Lanczos vectors v,+ 1 and

w,,+l can be obtained from the previous Lanczos vectors by a block three-term
recurrence. Similarly, it is possible to show that the vectors p, and q, also have a

block three-term recurrence, of the form

AP,_ 1 = PnGn_I and ATQn_I = Q,F_IG,_IF,_I, (3.4)

where

G,_ 1 := U,L,_,. (3.5)

The look-ahead strategy for the two pairs of sequences is then similar, and was

first proposed in [3]. In Step 1), the algorithm checks whether:

amin(E(k)) > eps,

n-1

-(A)llp.ll >_ I(u.L.-1),,._I IIp,ll, (3.6)
I _---frgk_ 1

n-1

-(A)llq.ll>_ IIq,ll. (3.7)
i=m_-l "Yi

Here, eps is machine epsilon, and n(A) is an estimate for the norm of A. The

vectors p, and q,, are built as regular vectors only if all three of the above checks

are satisfied. Likewise, in Step 3), the algorithm checks whether:

amin(D(0) >__eps,

r_

.(A) > I(L.u.),.I, (3s)
i----nl-i

n(A) >_ I(z.u.),.I, (3.9)

and again, the vectors v.+ 1 and w.+l are built as regular vectors only if all three
of the checks are passed. The motivation for these checks can be found in [3, 6].

Here, we will only note that the look-ahead strategy proposed will build regular
vectors in preference to inner vectors, and thus it will take as few look-ahead steps

as possible.
Once the decisions in Steps 1) and 3) are taken, the next vectors p. and q.,

and v.+ 1 and w.+l, are built in Steps 2) and 4). For p. and q., let k* denote the
number of the row of the first possible nonzero element in the nth column of U..
It can be shown that

k*=max{Jll<_j<k and mj <max{1, nr- 1}}. (3.10)

From (3.3), both the regular and the inner vectors have the same coefficients

Umk. :ink-l,,, given by _

Urnk. :r-k-1,n = (diag(E(k*) , E(k*+D, "'" , E(k- D)) -1

.[Q(k*) Q(k*+l) ... Q(k-1)]TAvn.

tWe denotexi:j = [xi zi+l "'" X]]T.

Implementation of the coupled QMR algorithm 7

For the regular vectors, the coefficients Umk:n-l,. are determined by the condi-

tion (3.2),

U, nk :n- 1,. = (E(_]) - I(Q(k))TAv., (3.11)

while for the inner vectors, the coefficients U,n_:._l, . are arbitrary:

ui,,=(ineC, for i=mk,m k+l,...,n-1. (3.12)

This completes the computation of the recurrence coefficients for P. and qn, and

the vectors are then computed from

n-1

Pn =vn- _ PiUin,
i=tnk*

n--I

qn = w.- _ qiu,.(7./Ti).
_----rtlk*

For vn+ 1 and w,_+l, let l* denote the number of the row of the first possible

nonzero element in the nth column of L n. It can be shown that

/*=max{Jll<j<l and nj <ink}. (3.13)

Again, by (2.3), both the regular and the inner vectors have the same coefficients

Ln,.:m_l,,_ , given by

L,,,.:m-l,, = (diag(DW), D(t*+l), ..., D(z-1))) -1

.[W(l*) W(t*+l) ... W(t-1)]TAp,.,.

the coefficients L,,,:n,,_ are determined by the condi-For the regular vectors,

tion (2.2),

L.,:.,n = (D(t))-I(W(Z))T Ap,_, (3.14)

while for the inner vectors, the coefficients Lnf:.,, _ are arbitrary:

lin =rlin EC for i=nl,nt+l,...,n. (3.15)

Once the recurrence coefficients for v.+ 1 and w.+ 1 are computed, the vectors are

constructed by scaling the vectors

Vn+l = APn- _ vilin,

i=nl*

t_n+ 1 = AT qn- _ wilin(Tn/Ti)'

to have unit length.

8 R.W. Freund and N.M. Nachtig_l

4 Implementation details

We now turn to a detailed description of the implementation of Algorithm 3.1. If

the coupled two-term Lanczos process is run without any look-ahead steps, it will

require two inner products at each step in order to compute all the coefficients
of the recurrence formulas. Hence, the goal for the look-ahead implementation is

to also require only two inner products per step for all the recurrence coefficients.

Recall that the look-ahead strategy (3.6) and (3.7) for the P-Q sequence and

the normalization (2.5) require a total of four norm computations, so that the

implementation will require two inner products and four norms per iteration.

To begin, let us introduce the auxiliary matrices

F n := WTnAPn and /_n := QTAVn,

whose columns are needed in (3.14) and in (3.11). In addition, we will make use

of the following symmetry relations from [6]:

D.r. = (D.r.) r,

E.r. = (E.r.) T,

r.r. = (P.r.) T

(4.1)

(4.2)

(4.3)

The nth iteration of the implementation will update the matrices Dn_ 1, En_ 1,

F,,_I, L,-I, Vn-1, Pn-1, Q,_-I, Yn, and Wn, to Dn, E n, r,_, L n, Un, Pn, Qn,

V,_+l , and W,_+I, respectively. We first list an outline of the algorithm as we have

implemented it.

Algorithm 4.1. (Coupled algorithm with look-ahead)

o) Choose '_1, '_i e C N with Ilnll = Ilwlll = 1, and compute wTvl.

Set k = l, m k = l, l =l, n t= 1.

For n = 1,2,..., do:

1) Update D,_ 1 to D n,

2) Determine k* from (3.10):

k* = max{j [1 < j < k and mj < max{1,n,- 1)}.

3) Compute Fn,l:n_ l from (4.4) below, using Ln_ 1 and D.,I:..

Then compute fl:,-1,,_ from (4.3).

4) Check whether E (_) is nonsingular:

i_erp = O'min(E(k)) < eps.

5) Compute the part of UI:,, n that is determined by biorthogonality:

Um,:m,+, -1,n = (E(i))-I(Q(1))TAvn

= (E(O)-lPm,:..,+,_I, ., i = k*,..., k - 1.

If itmerp, go to 6). Otherwise, set

Urn, :,-2,, = (E(k)) - 1(Q(k))Tmv" = (f(k))- 1F, nk :,- t,,_.

Implementationof the coupled QMR algorithm 9

6) Build the part of Pn and q,_ that is common to both regular and

inner vectors :

ink-1

Pn = "On -- ___ PiUln_

i=rnk_,

rnk-1

q. = w n - _ qiui,_(%ll7i)"
i----.rnk_,

If ±_erp, go to 11).

7) Build Gmk:,__l,n_ 1 and check the coefficient Gmk_l:n-l,,_-l"

If innerp, go to 11).

8) Build p,_ and qn as regular vectors:
rl,--1

Pn ----Pn " _._ piUln,
i----ink

n--I

q. = q.- _ q,_,,.(%_l'r,).

Compute APn, 7"qnmpn, IIP.II,and IIq.ll.

9) Build and check the coefficient G,nk:n-l,n. If innerp, go to 11).

10) Set rnk+ 1 = n, k = k + 1, and go to 12).

11) Choose the inner recurrence coefficients ui,_, i = rn_,...,n- 1, and

build Pn and qn as inner vectors:
n--1

Pn _-Pn-- _ PiUin,

q,,= q.- _ i,,,,,,('r,,l'r,).
i ,._rli l¢

Compute Apn, qTnAPn, lip, N, and IIq.11-

12) If IIp.II= o, or IIq.II= o, then stop.

13) Compute AT"q,.

14) Update En_ l to E,_.

15) Determine I* from (3.13):

l* =max{jl l<j<l and nj <m s}.

16) Compute Fl:n,,_ from (4.5) below, using E, and [7,.

17) Check whether D (I) is nonsingular:

innerv : _rmin(D(/)) < eps.

lO R.W. Freund and N.M. Nachtigal

18) Compute the part of Ll:n, _ that is determined by biorthogonality:

Ln,:n i+t - 1,n = (D(i))- 1(W(i))T Zpn

= (D(1))-IF.,:.,+I_I,., i = l*,...,l- 1.

If innerv, go to 19). Otherwise, set

L,,,:,_,. = (D(t))-I(W(_))T Ap. = (D (t))-lF.,:.,..

19) Build the part of v,_+l and w,_+l that is common to both regular and

inner vectors :

tit--1

vn+l = APn - E Vilin,

i=nl*

nz-1

wn+ 1 = ATqn -- E wilin(Tn/Ti)"

If imaerv, go to 24).

20) Build Hm:n,,_ and check the coefficient Hm__:n, n.

If imaerv, go to 24).

21) Build vn+ 1 and wn+ 1 as regular vectors:

22)

23)

_4)

Vn+l _- Vn+l -- _ vilin_

i_Tl!

_.+1 =w.+l - _ wilin(Tn/Ti)"

i--_n!

Computep.+1 = l_+a,.= It_.+xll,_.+1 = lib.+all-

If Pn+l = 0 or _n+l = O, then stop.

- T f)Otherwise, set %_+1 = 7nPn+l/_n+l, and compute w_+ 1 n+l.

Build and check the coefficient Hm:n,n+ 1. If im_erv, go to 24).

Set nl+ 1 = n + 1, 1 = 1+ 1, and go to 25).

Choose the inner recurrence coefficients tin , i = nt,... ,n, and

build vn+ 1 and wn+ 1 as inner vectors:

fl

.+ = r_.+_- _ v,l_.,
i=nE

Cvn+l = wn+l - _ wilm(Tn/Ti)"

i_l'l l

Compute Pn+l = ln+Ln = I1_.+_11,_.+x = II_.+dl-

Implementation of the coupled QMR algorithm 11

If Pn+l = 0 or ¢n+l = O, then stop.
-T

Otherwise, set "}'n+l = 7nPn+l/_n+l, and compute w,_+lVn+ 1.

25) Set

Vn+l ---- Vn+l/Pn+l, Wn+l = l_)n+l/_n+l'

wT+lvn+I ~T ~= Wn+lVn+l/(Pn+l_n+l).

Step 1. The diagonal term wTvn has already been computed directly, at the end

of the previous step. Next, using

Fn_] = WTn_IAPn_I = wT_I VnLn_I
(4.4)

= Dn_lLl:n_l,l:n_l + ln,n_aDl:._l,,_ [0 '-. 0 1],

the remainder of the last column of D,_ is computed from Dn_l, F._ 1, and Ln_ 1.

The last row of D n is obtained by symmetry, using (4.1).

Step 7. We build Gmk:n_l,n_l, which would be the coefficient of the p(k) and

Q(k) blocks in the three-term recurrences (3.4) for Pn and qn" Using (3.5), one has

n

Gi, n-1 = E uiJl£ n-l' i = ink,... , n -- 1.
j=i

The coefficient Gmk_l:mk_l,n_ 1 has already been built as part of Step 9) at the
previous iteration. We then check (3.6)-(3.7), and set imaerp to TI_UE if at least
one of the two checks fails.

Step 9. We build G,n_:.-x,,_, which would be the coefficient of the p(k) and Q(k)

blocks in the three-term recurrences (3.4) for P.+I and q.+l- It is straightforward
to show that

G,nk:n_l,n = (E(k))-I(Q(k))T AApn.

Moreover, we have

QT_aAAp, _ = 7" T(A Q,-1) Apn = (Q.r_IU.Ln_]rn_I)T Ap,,

T T -1 T
= Fn_ILn_]U,_ Fn QnAPn

v L T rrTF-l[O • 0 qTApn]T"-- J'n-] n-l_n n ""

7n-] [0 -. 0 qTAPnIT
-- 7n In'n-] "

We then check a subset of (3.6)-(3.7), and set ixmerp to TRUE if at least one of
the two checks fails.

Step 14. The diagonal term q_Ap, has already been computed directly, as part

of Step 8) or Step 11). Next, using

Fn WT_AP,_ T-1 r= = FnU_ Fn Q, APn, (4.5)

the remainder of the last row of En is computed from E,,_], F1:,,.1:,_ 1, and U,.

The last column of E n is obtained by symmetry, using (4.2).

12 R.W.FreundandN.M.Nachtigal

Step 20. Webuild Hm:n,n, which would be the coefficient of the V (t) and W (r)

blocks in the three-term recurrences (2.6) and (2.7) for v,+ 1 and w,+ 1. Using (3.1),
one has

Yl

nin = _lijUjn , i -" nl,...,n.
j=i

The coefficient Hm_l:n__l, n has already been built a.s part of Step 22) at the
previous iteration. We then check (3.8)-(3.9), and set £nnerv to TaUt. if at least
one of the two checks fails.

Step 22. We build Hn,:n,n+l, which would be the coefficient of the V (l) and

W (a) blocks in the three-term recurrences (2.6) and (2.7) for vn+ 2 and wn+ 2. It is

straightforward to show that

Hm:n,n+ 1 = (D(1))-I(w(t))T Avn+I.

Moreover, we have

Wr. Av.+l = (ATW.) r Av.+l = (w.+lrz_an.tr.r.) r V.+l

= r.vyL_.rZ)lWY+lv.+_
T T=r.v.rz.rrzL[0 ... 0 _.+,v.+,]

T T= 7. 1.+1,.[0 --" 0 w.+lv.+l] •
"/n+l

We then check a subset of (3.8)-(3.9), and set imxerv to Tar.rE if at least one of
the two checks fails.

We remark that the checks in steps 9) and 22) are actually slightly relaxed

versions of (3.8)-(3.9), and (3.6)-(3.7), respectively, since the indices checked are

only a subset of the full range appearing in (3.8)-(3.9) and (3.6)-(3.7). We also

note that the algorithm above requires minimal inputs from the user. Recall that

eps in steps 4) and 17) is machine epsilon. Furthermore, the estimate n(A) for the
norm of thematrix can be updated dynamically, as was done in [3].

The coupled Lanczos Algorithm 4.1 requires per iteration the computation of

two inner products and four vector norms. We conclude this section by noting

that, in Algorithm 4.1, the choice of the inner recurrence coefficients (3.12) and

(3.15) is arbitrary. In our implementation of the algorithm, we have used

Un_l, n = 1,

Un_2, n = 1, when rn_ < n- 2,

uin =0, for i=mk,...,n-3,

inn = 1,

in_l, n -- .1= when n 1 < n- 1,

li,_ =0, for i=nl,!..,n-2,

for the inner vector recurrence coefficients.

Implementationofthe coupled QMR algorithm 13

5 The coupled two-term QMR algorithm

We now consider the quasi-minimal residual approach and briefly outline how

it can be combined with the coupled two-term look-ahead Lanczos algorithm of

Section 3 to obtain a new implementation of the QMR method. We note that the

QMR algorithm was proposed in [5] for the case ofnonsingular linear systems (1.1).

It was later shown by Freund and Hochbruck [4] that the algorithm can also be

applied to singular systems, and that it always generates well-defined iterates.

However, these iterates converge to a meaningful solution only for the special case

of consistent systems with coefficient matrices A of index 1. Here, we consider

the QMR method for the general case of N x N linear systems, with singular or

nonsingular coefficient matrices.

The QMR algorithm belongs to the family of Krylov subspace methods. Let

x0 E C N be an initial guess for the solution of (1.1), and r0 = b - Ax 0 the

corresponding initial residual, of length ,01 = [[r01 [. Choosing v, = ro/Pl as the

starting right Lanczos vector for Algorithm 4.1, and w 1 with []wl[] = 1 as an
arbitrary starting left Lanczos vector, one obtains the four basis sets, Vn, W_, P.,

and Qn, of which the ones of interest are V,_ and Pn, related by:

Vn=PnR, and AP n=Vn+IL ..

Once the basis vectors are constructed, the nth QMR iterate is selected from the

shifted Krylov subspace z 0 + Kn(r0, A) as

xn = Zo + Pnvn, (5.1)

where Yn E C" is defined by the quasi-minimal residual condition

Ill.+1 - L.y.l] = min Ill.+1 - n.Yll. (5.2)
y ,e C"

This is an (n + 1) x n least-squares problem, where

fn+l :=Pl'[1 0 -'- O]T • R n+l,

and we have used the normalization (2.5) of the Lanczos vectors; otherwise, the
least-squares problem above also involves a diagonal scaling matrix.

Note that, by setting

z,, = (Rn)-lyn,

and inserting in (5.2), one obtains the equivalent least-squares problem

Ill.+1- g.R.zn]l = min Ill.+, - L.R.zI[,
zEC"

which is exactly the least-squares problem solved by the QMR algorithm based

on the three-term Lanczos process. Thus, the QMR iterates (5.1) are, in exact

arithmetic, identical to the iterates of the original QMR algorithm [5]. However,

as was shown in [6], in finite precision arithmetic, the coupled QMR algorithm is
more robust than the three-term recurrence version.

Like the original QMR algorithm, the new implementation has a number of

desirable properties. Since they are equivalent, all the theoretical properties of the

14 R.W.FreundandN.M.N_chtigal

three-termrecurrenceQMRalgorithmcarryoverto thecoupledversion.Thenew
methodalsoshowsasmoothandnearlymonotoneconvergencecurve.At all times
duringtheiteration,anupperboundfor theQMRresidualnormisavailableat
noextracost,and,astheexampleswill show,thisupperboundis a verygood
indicatorof theconvergenceofthemethod.Asin theoriginalversion,theQMR
iteratehasa shortupdateformula,involvingonlyonedirectionvectorthat can
beupdatedwitha two-termrecurrence.This isslightlycheaperthanin theold
method,wherethecorrespondingsearchdirectionsfor theupdateofthe iterates
hada three-termrecurrence.Finally,thenewversionseemsto besignificantly
morerobustthan theold version,thoughno theoreticalresultsareavailableto
explainthedifferences.Fora full discussionof thepropertiesof thetwoQMR
algorithms,see[5,6].

6 Numerical experiments

In this section, we present a few numerical examples with the new implementation

of the QMR algorithm. All these examples were run either on a Cray-2 at the
NASA Ames Research Center or on a Cray Y-MP at AT&T Bell Laboratories,

with a machine epsilon of about 5.0E-29.

In the plots below, we always show two curves, the computed scaled residual

norm][rn[[/[[r0[[(solid line) and the residual norm upper bound (dotted line).

Recall that the upper bound is available at each step at no extra cost.

Example 6.1. This example is taken from [2]. Here we consider the differential

equation
Lu=f on (O, 1) x(O, 1) x(O, 1), (6.1)

where

(,)Ou l+x+Y+ z+50(z + y + z)b- z+ - 250 u,

with Dirichlet boundary conditions u = 0. The right-hand side f was chosen so

that

u = (1 - z)(1 - y)(1 - z)(1 - e-_)(1 - e-V)(1 - e -z)

is the exact solution of (6.1). We discretized (6.1) using centered differences on a

40 x 40 x 40 grid with mesh size h = 1/41. This leads to a linear system of order
N = 64000 with 438400 nonzero entries. The starting vector w 1 was a random

vector, and the initial guess x 0 was zero. The example was run with a right SSOR

preconditioner [1], with w = 1.0. The algorithm stagnated at 1.6E-25 after 119

steps. For the V-W sequence, it built 4 blocks of size 2, and forced a block closure
once. For the P-Q sequence, it built 2 blocks of size 2, and forced a block closure

once.

Implementation of the coupled QMR algorithm 15

105

10 "5

10 -to

10 -ts

10 -_

10 "_

10 -3o

t i
10"_ 0 20 40

"..o,
"i

i | a i J

60 80 lO0 120 140

It_zt_on number

Figure 1: Convergence curves for Example 6.1.

Example 6.2. This example was provided to us by V. Venkatakrishnan [10],

from the Numerical Aerodynamic Simulation Group at the NASA Ames Research

Center. It comes from an unstructured 2-D Euler solver, and it corresponds to the

system at the beginning of time-stepping. The linear system is of order N = 62424

with 1717792 nonzero elements. The right-hand side b and the starting vector w 1

were both random vectors, while the initial guess x 0 was zero. Once again, the
example was run with a right SSOR preconditioner, with w = 1.0. The algorithm

was stopped once it reached 1.0E-20, after 107 steps. For the V-W sequence, it

built 3 blocks of size 2, and 1 block of size 3. For the P-Q sequence, it built no

blocks, but forced a block closure once.

Example 6.3. This example was taken from [8], where McQuain and his collabo-

rators investigated the applicability of iterative methods to linear systems arising

in circuit simulation. In particular, they studied the solution of systems involving

the Jacobians that arise when a homotopy algorithm is applied to the computa-

tion of the DC operating point of a circuit. While these linear systems seem to

be rather difficult, they are not intractable. In the example, a Jacobian of order

N = 1853 with 8994 nonzero elements was considered; it is the first Jacobian from

the IS7B sequence discussed in Section 5.3 of [8]. The right-hand side b was ob-

tained by moving the last column of the original rectangular n x (n + 1) Jacobian

to the other side. The starting guess x 0 was zero, and the starting vector w 1 was

set w 1 = v I = b. The example was run with the variant described in [5] of Saad's

ILUT preconditioner [9], with no additional fill-in allowed and a drop tolerance of

16 R.W.FreundandN.M.Nachtigal

10.2

i0_

i0_

i0"s

i0-Zo

i0"n

i0-I(

i0-t_

i0-_'

i0-ao

_.-.-,.,

L i I]1'o 3'0 ,o 5'o 7'0 9o
I_ratioa nu_Imr

Figure 2: Convergence curves for Example 6.2.

0.001, which generated a matrix L with 4766 nonzero elements, and a matrix U
with 5034 nonzero elements. The algorithm stagnated at 8.7E-23 after 67 steps.
It built no took-ahead blocks.

The examples shown illustrate several points. As already noted, the coupled

QMR algorithm has a rather smooth and almost monotone convergence behavior.

It makes available a residual norm upper bound that is a very good indicator of

the convergence of the method. Finally, while it is possible to construct examples
with arbitrary look-ahead structure, numerical experience seems to indicate that,

on the average, the look-ahead strategy does not build many look-ahead blocks.

Indeed, the vast majority of the steps taken by the coupled two-term look-ahead

Lanczos process are regular steps; furthermore, from the look-ahead steps of size

greater than 1 taken, the majority are blocks of size 2.

7 Concluding remarks

We have presented details of an implementation of a new look-ahead algorithm

for constructing Lanczos vectors based on coupled two-term recurrences instead
of the usual three-term recurrences. We then discussed a new implementation of

the quasi-minimal residual algorithm, using the coupled process to build the basis

for the Krylov subspace. While the theoretical results derived for the original

Implementationofthe coupled QMR algorithm 17

lO_

lo°

10 .5

10 -_o

10 "u

10 -_

to_,

to,_ "", ,..

i i i1'o 2o 3'o 4o ;o /o
I_'afion Dmmt_r

8O

Figure 3: Convergence curves for Example 6.3.

algorithm carry over to the new one, the latter was shown in examples to have

better numerical properties.

FORTRAN 77 codes for the coupled-two term look-ahead procedure and the

resulting new implementation of the QMR algorithm can be obtained electroni-

cally from the authors (freund@research.att.com or na.nachtigal@na-net.ornl.gov).

We note that FORTRAN 77 codes for the original implementation of QMR and

the underlying look-ahead Lanczos algorithm are available from netlib by send-

ing an email message consisting of the single line "send lalqmr from misc" to

netlib@ornl.gov or netlib@research.att.com.

Acknowledgements

We would like to thank V. Venkatakrishnan and W. McQuain for providing the

matrices for Examples 6.2 and 6.3.

References

[1] O. Axelsson, A survey o/preconditioned iterative methods .for linear systems o`f

18 R.W. Freund and N.M. NachtigM

algebraic equations, BIT 25 (1985) 166-187.

[2] D. Baxter, J. Saltz, M. Schultz, S. Eisenstat, and K. Crowley, An experimental study

of methods]or parallel preconditioned Krylov methods, Technical Report RR-629,

Department of Computer Science, Yale University, New Haven, Connecticut, 1988.

[3] R.W. Freund, M.H. Gutknecht, and N.M. Nachtigal, An implementation of the

look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput.

14 (1993), to appear.

[4] R.W. Freund and M. Hochbruck,
singular systems and applications

Linear Algebra with Applications

On the use of two QMR algorithms for solving

in Markov chain modeling, Journal of NumericM

2 (1993), to appear.

[5] R.W. Freund and N.M. Nachtigal, QMR: a quasi-minimal residual method for non-

Hermitian linear systems, Numer. Math. 60 (1991), 315-339.

[6] R.W. Freund and N.M. Nachtigal, An implementation of the QMR method based

on coupled two-term recurrences, Technical Report 92.15, RIACS, NASA Ames

Research Center, Moffett Field, California, June 1992.

[7] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators, J. Res. Nat. Bur. Standards 45 (1950), 255-282.

[8] W.D. McQuain, C.J. Ribbens, L.T. Watson, and R.C. Melville, Preconditioned iter-

ative methods for sparse linear algebra problems arising in circuit simulation, Tech-

nical Report 92-07, Department of Computer Science, Virginia Polytechnic Institute

and State University, Blacksburg, Virginia, March 1992.

[9] Y. Saad, ILUT: a dual threshold incomplete LU 1actorization, Research Report

UMSI 92/38, University of Minnesota Supercomputer Institute, Minneapolis, Min-

nesota, March 1992.

[10] V. Venkatakrishnan and T.J. Bartli, Unstructured grid solvers on the iPSC/860,

Parallel Computational Fluid Dynamics, Rutgers, New Jersey, May 1992.

